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Abstract

Supersymmetric quantum mechanics is formulated on a two-dimensional
noncommutative plane and applied to the supersymmetric harmonic oscillator.
We find that the ordinary commutative supersymmetry is partially broken and
only half of the number of supercharges are conserved. It is argued that this
breaking is closely related to the breaking of time reversal symmetry arising
from noncommutativity.

PACS number: 11.10.Nx

1. Introduction

Ever since the realization that a consistent quantum description of gravity may require
a drastic change in our notion of spacetime at short lengthscales [1–3], noncommutative
geometry, and particularly the formulation of quantum mechanics and quantum field theories
on noncommutative spaces [4], has become a fruitful line of investigation as a possible
candidate to replace our current notion of spacetime [5].

An interesting feature of noncommutative quantum mechanics that emerged from these
studies is the breaking of time reversal symmetry in the presence of a non-constant potential
[6, 7]. As this clearly lifts some of the degeneracies in the spectrum, it is natural to ask how this
may effect other symmetries and in particular supersymmetry. This is a particularly pertinent
question in the light of the findings of [8] where it was concluded that supersymmetry is half
broken in the presence of noncommutativity.

The simplest setting to discuss supersymmetric quantum mechanics is in the context of
the ordinary supersymmetric factorization as discussed in [9] and references therein. Here,
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our aim is to generalize this supersymmetric factorization to the noncommutative case and to
investigate the implications that noncommutativity has for supersymmetry.

As the prime example of a factorizable potential is the harmonic oscillator, this is also
the most natural example to which the resulting formalism can be applied. In contrast to the
noncommutative harmonic oscillator on which a considerable body of literature exists (see
e.g. [10–12]), the noncommutative supersymmetric harmonic oscillator only received some
attention recently [13, 14]. Here we follow a different approach, based on [15], and rather
focus on the issue of supersymmetry breaking, which was not discussed in these papers.

Not unexpectedly the supersymmetric noncommutative harmonic oscillator Hamiltonian
can be diagonalized and the quantum supercharges identified. We find that the
noncommutativity partially breaks the ordinary N = 4 supersymmetry down to N = 2.
It is argued that this breaking is directly related to the breaking of time reversal symmetry.

The paper is organized as follows. The following section is devoted to classical and
quantum algebraic considerations induced by the noncommutativity. Section 3 develops our
main results on noncommutative supersymmetric factorization which we apply to a solvable
case, namely the harmonic oscillator in two dimensions. Section 4 discusses the question of
BPS states [16] in the present context. The paper ends with some discussion in section 5.

2. Classical and quantum algebras

Before studying the supersymmetric version of the noncommutative harmonic oscillator,
this section discusses some algebraic preliminaries pertaining to noncommutative coordinate
algebras and their representation, thus fixing the notations of the following sections.

Noncommutative two-dimensional space is defined by the following commutation relation
between coordinates:

[x̂, ŷ] = i θ. (1)

The parameter θ will be referred to as the noncommutative parameter and has the dimension
of a length squared. More generally, in the 2N -dimensional case the commutation relations
can be brought into a canonical form [xi, yj ] = i�ij , where the antisymmetric tensor �ij has
the block diagonal form �ij = diag(J 1, J 2, . . . , JN) with J j given by

J j =
(

0 θj

−θj 0

)
. (2)

Thus, for each symplectic pair (xj , yj ), the noncommutative parameter is θj > 0, j =
1, 2, . . . , N .

Introducing the pair of boson annihilation and creation operators b = (1/
√

2θ)(x̂ + iŷ)

and b† = (1/
√

2θ)(x̂ − iŷ), which satisfy the Heisenberg–Fock algebra [b, b†] = 11,
noncommutative configuration space is itself a Hilbert space, which we denote by Hc,
isomorphic to boson Fock space Hc = span{|n〉, n ∈ N}, with |n〉 = (1/

√
n!)(b†)n|0〉.

In the 2N -dimensional case classical configuration space is simply the N tensorial product of
Fock space.

On the quantum level the Hilbert space in which the states of the system are represented,
and which we denote by Hq , is defined to be the space of Hilbert–Schmidt operators on Hc

[17]:

Hq = {ψ(x̂1, x̂2) : ψ(x̂1, x̂2) ∈ B(Hc), trc(ψ(x̂1, x̂2)
†ψ(x̂1, x̂2)) < ∞}, (3)

where trc denotes the trace over Hc and B(Hc) is the set of bounded operators on Hc.
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Next, we seek a representation on Hq of the noncommutative Heisenberg algebra

[X̂, Ŷ ] = i θ,

[X̂, P̂X] = i h̄ = [Ŷ , P̂Y ],

[P̂X, P̂Y ] = 0.

(4)

Henceforth capital letters are reserved to refer to quantum operators acting on Hq in order
to distinguish them from operators acting on noncommutative configuration space Hc. It is
easily verified that a representation is provided by the following:

X̂ψ = x̂ψ, Ŷψ = ŷψ, P̂Xψ = h̄

θ
[ŷ, ψ], P̂Y ψ = − h̄

θ
[x̂, ψ]. (5)

Furthermore, it can also be shown that these operators are self-adjoint with respect to
the quantum Hilbert space inner product (φ|ψ) = trc(φ

†ψ), which makes this a unitary
representation.

3. Supersymmetric noncommutative harmonic oscillator

With the formal structure of the noncommutative quantum theory settled, we proceed to
introduce the concept of supersymmetric factorization in a noncommutative space after which
we apply the resulting formalism to the noncommutative harmonic oscillator.

3.1. Noncommutative supersymmetric factorization

Supersymmetric factorization in commutative quantum mechanics and in two or more
dimensions has recently been considered in [15]. Here we generalize this approach to a
noncommutative quantum system focusing on two dimensions.

We consider the following noncommutative Hamiltonian:

H = 1

2m

(
P̂ 2

X + P̂ 2
Y

)
+ V1(X̂, Ŷ ), (6)

where V1(x̂, ŷ), considered as an operator acting on configuration space, is Hermitian, which
is the analogue of a real potential in commutative space. The factorized quantum Hamiltonian
assumes the general form

H1 = h̄ω
(
B

†
XBX + B

†
Y BY

)
, (7)

where the dimensionless operators BX,B
†
X,BY , B

†
Y are defined as

BX = 1√
h̄ω

(
i√
2m

P̂ X + WX(X̂, Ŷ )

)
, B

†
X = 1√

h̄ω

(
− i√

2m
P̂ X + WX(X̂, Ŷ )

)
, (8)

BY = 1√
h̄ω

(
i√
2m

P̂ Y + WY (X̂, Ŷ )

)
, B

†
Y = 1√

h̄ω

(
− i√

2m
P̂ Y + WY (X̂, Ŷ )

)
, (9)

and the Hermitian superpotentials W
†
X(X̂, Ŷ ) = WX(X̂, Ŷ ) and W

†
Y (X̂, Ŷ ) = WY (X̂, Ŷ ) are

yet to be specified. From (7) one obtains the noncommutative version of the Riccati equation
in two dimensions

V1(X̂, Ŷ ) = i√
2m

((P̂ XWX)(X̂, Ŷ ) + (P̂ Y WY )(X̂, Ŷ )) + (WX(X̂, Ŷ ))2 + (WY (X̂, Ŷ ))2, (10)

which is closely related to the so-called algebraic (matrix) Riccati equation. One notes that
the two superpotentials WX and WY are coupled. The ground-state operator �00 should be
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annihilated by both of the annihilators BX and BY , but in contrast to the commutative case
the solutions WX and WY of the above equation cannot be written explicitly in terms of the
ground state, but are given by an algebraic system

ih̄√
2mθ

[Ŷ , �00] + WX(X̂, Ŷ )�00 = 0, (11)

−ih̄√
2mθ

[X̂,�00] + WY (X̂, Ŷ )�00 = 0. (12)

As is customarily the case in one-dimensional supersymmetry quantum mechanics, a different
Hamiltonian can be obtained by reversing the order of the operators. Here, apart from H1, we
get mixed types of operators [15]

H ′
11 = h̄ω

(
BXB

†
X + B

†
Y BY

)
, H ′

22 = h̄ω
(
B

†
XBX + BY B

†
Y

)
, (13)

H ′
12 = h̄ω

(
BY B

†
X − B

†
XBY

)
, H ′

21 = h̄ω
(
BXB

†
Y − B

†
Y BX

)
, (14)

H2 = h̄ω
(
BXB

†
X + BY B

†
Y

)
, (15)

with H ′†
12 = H ′

21. The corresponding superpartner potentials can also be derived

V ′
1(X̂, Ŷ ) = −i√

2m
[(P̂ XWX)(X̂, Ŷ )− (P̂ Y WY )(X̂, Ŷ )] + (WX(X̂, Ŷ ))2 + (WY (X̂, Ŷ ))2, (16)

V ′
2(X̂, Ŷ ) = i√

2m
[(P̂ XWX)(X̂, Ŷ )− (P̂ Y WY )(X̂, Ŷ )] + (WX(X̂, Ŷ ))2 + (WY (X̂, Ŷ ))2, (17)

V2(X̂, Ŷ ) = −i√
2m

[(P̂ XWX)(X̂, Ŷ ) + (P̂ Y WY )(X̂, Ŷ )] + (WX(X̂, Ŷ ))2 + (WY (X̂, Ŷ ))2. (18)

Here V ′
1, V

′
2 and V2 are, respectively, associated with H ′

11,H
′
22 and H2. We emphasize that

this factorization method is more general than the direct noncommutative extension of the
two-dimensional commutative supersymmetric formulation of [15]. Indeed, in the latter a
unique superpotential W(X̂, Ŷ ) is required and raising and lowering operators are defined by
substituting in (8) and (9) WX(X̂, Ŷ ) = (P̂ XW)(X̂, Ŷ ) and WY (X̂, Ŷ ) = (P̂ Y W)(X̂, Ŷ ). The
two-dimensional Riccati equation in the variables (P̂ XW, P̂ Y W) can then be written in terms
of a generalized noncommutative gradient of P̂ X,Y W , namely

V1(X̂, Ŷ ) = i√
2m

(
P̂ 2

XW + P̂ 2
Y W

)
(X̂, Ŷ ) + ((P̂ XW)2 + (P̂ Y W)2)(X̂, Ŷ ). (19)

The natural question of the relation between energy eigenvalues and eigenfunctions of the
different Hamiltonians H1,H

′
1,H

′
2 and H2 can now be considered, i.e., the supercharge

formulation should be investigated. The following relations hold

H1B
†
X = B

†
XH ′

11 + B
†
Y H ′

21 +
[
B

†
Y , B

†
X

]
BY , (20)

H1B
†
Y = B

†
XH ′

12 + B
†
Y H ′

22 − [
B

†
Y , B

†
X

]
BX, (21)

B
†
XH2 = H ′

22B
†
X − H ′

21B
†
Y − BY

[
B

†
Y , B

†
X

]
, (22)

B
†
Y H2 = −H ′

12B
†
X + H ′

11B
†
Y + BX

[
B

†
Y , B

†
X

]
. (23)

Other types of relations can be obtained by taking the adjoint of these identities. Note
that the last terms in (20)–(23) involve the commutator

[
B

†
Y , B

†
X

]
, which cannot vanish
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without further assumptions. It turns out that, choosing WX(X̂, Ŷ ) = (P̂ XW)(X̂, Ŷ ) and
WY (X̂, Ŷ ) = (P̂ Y W)(X̂, Ŷ ), this commutator reduces to[

B
†
Y , B

†
X

] = [P̂ Y W, P̂ XW ], (24)

and that in the commutative limit one recovers the two-dimensional supersymmetry as
discussed in [15]. This underlines also the plausible scenario that noncommutativity could
break the supersymmetry. Another issue that we shall not pursue here, but that could be
of major interest, is the notion of noncommutative shape invariance, solvable potentials and
Hamiltonian hierarchy [9]. As these concepts rest on algebraic commutation relations and
the noncommutativity involves the adjoint action, it should be possible to investigate these
concepts in the noncommutative setting. However, due to the dimension greater than one,
these notions are not even yet well understood in the commutative case [18].

3.2. Application to the noncommutative harmonic oscillator

As an application of the above formalism, let us consider the noncommutative harmonic
oscillator. The quantum Hamiltonian defining the motion of a non-relativistic particle of mass
m confined in a harmonic well with frequency ω within a noncommutative plane can be written
up to a constant4 as

H1 = 1

2m

(
P̂ 2

X + P̂ 2
Y

)
+

1

2
mω2(X̂2 + Ŷ 2) − h̄ω. (25)

The following superpotentials

WX(X̂, Ŷ ) =
√

mω

2h̄
X̂, WY (X̂, Ŷ ) =

√
mω

2h̄
Ŷ (26)

allow the following definition of the operators:

BX =
√

mω

2h̄

(
X̂ +

i

mω
P̂ X

)
, B

†
X =

√
mω

2h̄

(
X̂ − i

mω
P̂ X

)
, (27)

BY =
√

mω

2h̄

(
Ŷ +

i

mω
P̂ Y

)
, B

†
Y =

√
mω

2h̄

(
Ŷ − i

mω
P̂ Y

)
. (28)

These operators admit the following factorization of the Hamiltonian H1:

H1 = h̄ω
(
B

†
XBX + B

†
Y BY

)
. (29)

The associated Hamiltonians are easily computed

H2 = H1 + 2h̄ωI, H ′
11 = H1 + h̄ω = H ′

22, H ′
12 = − imω2θ

2
= −H ′

21. (30)

The noncommutative supersymmetric factorization can therefore be carried out exactly for the
noncommutative harmonic oscillator. However, the quantum supercharges cannot be identified
with these operators. Indeed, we can check that

[
B

†
X,B

†
Y

] ∝ θ implies that (20)–(23) do not
define a superalgebra. It is only through a re-factorization of the Hamiltonian with respect to
decoupled operators that the superalgebra emerges.

To proceed, we write H1 (29) in the matrix form

H = h̄ωB†B, B = (BX,BY )t , (31)

4 This constant, −h̄ω, has to be related to the unbroken supersymmetry as appears hereafter.
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where symbol t denotes the transpose operation. The purpose of this rewriting is the
factorization of the Hamiltonian in terms of diagonal bosonic operators:

H = h̄ωA†DA, A = (A+, A−)t , (32)

where D is some diagonal positive matrix and
(
A±, A

†
±
)

satisfy decoupled and diagonal
bosonic commutation relations,[

A±, A
†
±
] = I. (33)

We introduce the vectors A+ = (
A

†
+, A

†
−
)t

and B+ = (
B

†
X,B

†
Y

)t
, for which (A+)t = A†, as

well as a linear transformation S relating them

A = SB, A+ = S∗B+. (34)

Defining the matrix g with elements

gkl = [
Bk, B

+
l

]
, k, l = 1, 2, B1 := BX, B2 := BY , (35)

it is simple to verify that g is Hermitian. Let us denote its eigenvectors by ui, i = 1, 2. From
the commutation relations[

Ai,A
+
j

] = δij , i, j = 1, 2, (36)

one derives the identity

SgS† = I2. (37)

The Hamiltonian diagonalization is now immediate with the following choice of the matrix
S† = (u1, u2). Noting from (37) that (S†)−1 = Sg, we get from (34), when inserted into (31),
the following result

H = h̄ω(A+)tSg2S†A. (38)

It simply remains to apply g twice on its eigenstates to obtain the diagonal form of the
Hamiltonian. The eigenvectors have not yet been normalized. The normalization conditions
are fixed from the requirement that for i = 1, 2, (ui)

†ui = 1/|λi |, where λi is the eigenvalue
associated with ui . Thus, in terms of these boson operators the Hamiltonian can be expressed
as

H = h̄ω
(|λ+|A†

+A+ + |λ−|A†
−A−

)
, (39)

where |λ±| are the absolute values of the eigenvalues of the matrix

g =
(

1 aθ

−aθ 1

)
. (40)

Here we have introduced the parameter aθ = 1
2h̄mωθ . The computation of these eigenvalues

is easily performed with the result

|λ+| = 1 + aθ , |λ−| = |1 − aθ |, (41)

which diagonalizes the Hamiltonian (31). This operator is nothing but the Hamiltonian
describing a harmonic oscillator with frequency encoding the noncommutative parameters
(θ, h̄). In terms of B these bosonic operators can be expressed as

A+ = 1

c+
(−iBX + BY ), A− = 1

c−
(iBX + BY ),

c+ =
√

2(1 + aθ ), c− =
√

2|1 − aθ |,
(42)

while A
†
± are obtained by the adjoint. Finally, we mention that this factorization still works for

a model with broken rotational symmetry resulting from different frequencies (ωX, ωY ) for
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the noncommutative directions. In this case, one considers, without loss of generality, scaled
operators in one direction, for instance Ŷ , namely, B̃Y = √

(ωY /ωY )BY , and proceeds in the
same way as before. One arrives at the following factorized operator:

H ′ = h̄
(|λ′

+|A′†
+ A′

+ + |λ′
−|A′†

−A′
−
)
,

|λ′
±| =

∣∣∣∣∣∣ωX + ωY

2
± 1

2

√
(ωX − ωY )2 +

(
mωXωY θ

h̄

)2
∣∣∣∣∣∣ , (43)

which, of course reduces to (39) when ωX = ωY = ω.
At this point, we are able to identify the quantum supercharges. Fixing the constant

parameters κ± = √
h̄ω|λ±|, the following operator

Q =

⎛⎜⎜⎝
0 0 0 0

κ+A+ 0 0 0
κ−A− 0 0 0

0 κ−A− −κ+A+ 0

⎞⎟⎟⎠ (44)

and its adjoint Q† satisfy a N = 2 superalgebra such that

{Q,Q†} = H, [Q,H] = 0 = [Q†,H], (45)

with the 4 × 4 matrix Hamiltonian given by

H =

⎛⎜⎜⎝
H1

+ + H1
− 0 0 0

0 H2
+ + H1

− 0 0
0 0 H2

− + H1
+ 0

0 0 0 H2
+ + H2

−

⎞⎟⎟⎠ , (46)

H1
± = h̄ω|λ±|A†

±A±, H2
± = h̄ω|λ±|A±A

†
±. (47)

We get the following relations between the Hamiltonians:

H11
(
κ+A

†
+

) = (
κ+A

†
+

)
H22, H11

(
κ+A

†
−
) = (

κ+A
†
−
)
H33, (48)(

κ+A
†
+

)
H44 = H33

(
κ+A

†
+

)
,

(
κ+A

†
−
)
H44 = H22

(
κ+A

†
+

)
, (49)

H11 = H1
+ + H1

−, H22 = H2
+ + H1

−, H33 = H1
+ + H2

−, H44 = H2
+ + H2

−,

(50)

which are to be compared with (20)–(23). From this one can obtain the correct relations
between the operator eigenfunctions of these Hamiltonians.

Each of the matrix operators Q and Q† can indeed be decomposed into four elementary
matrices labeled by their entries and each of these ‘sub-operators’ represents a symmetry of
the Hamiltonian. In that language, we should say that the model is N = 8 supersymmetric.
Nevertheless, as a matter of compact notation we keep to the operators Q and Q†, which
generate a N = 2 supersymmetry. It should be emphasized that in the commutative limit
θ → 0 the operator

Q′ =

⎛⎜⎜⎝
0 0 0 0

κ−A− 0 0 0
κ+A+ 0 0 0

0 κ+A+ −κ−A− 0

⎞⎟⎟⎠ (51)

7
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and its adjoint Q′† also provide a set of symmetries for the Hamiltonian. In the presence
of noncommutative geometry, i.e., when the noncommutative parameter θ 
= 0, the total
supersymmetry is partially broken and the number of supercharges decreases from N = 4
to N = 2 (actually from N = 16 to N = 8). Finally, let us mention that this partial
supersymmetry breaking is in agreement with the supersymmetry reduction N = 1 → 1/2 as
pointed out by Seiberg in the context of noncommutative superfield theory in four-dimensional
noncommutative spacetime [2].

Let us now investigate the relationship between this partial supersymmetry breaking and
time reversal asymmetry arising from noncommutativity. We start by calculating the total
angular momentum operator. Given the tensor product supercharges

Q1 = κ+A+σ− ⊗ σ3, Q
†
1 = κ+A

†
+σ+ ⊗ σ3, (52)

Q2 = κ−A−I2 ⊗ σ−, Q
†
2 = κ−A

†
−I2 ⊗ σ+, (53)

we can write

Q = Q1 + Q2, Q† = Q
†
1 + Q

†
2. (54)

The Hamiltonian can then be written as

H = {
Q1,Q

†
1

}
+

{
Q2,Q

†
2

} = H′
I2 ⊗ I2 − κ2

+

2
σ3 ⊗ I2 − κ2

−
2

I2 ⊗ σ3,

H′ = κ2
+A†

+A+ + κ2
−A

†
−A− +

κ2
+

2
+

κ2
−
2

.

(55)

The system therefore admits a total spin operator as

S = h̄

2
(−I2 ⊗ σ3 + σ3 ⊗ I2). (56)

The following identities can be deduced

[S, σ− ⊗ σ3] = −h̄σ− ⊗ σ3 [S, I2 ⊗ σ−] = h̄I2 ⊗ σ−. (57)

The noncommutative orbital angular momentum operator Lz is given by [7]

Lz = X̂P̂ Y − Ŷ P̂ X +
θ

2h̄

(
P̂ 2

X + P̂ 2
Y

)
(58)

and satisfies the algebra [Lz, X̂] = i h̄Ŷ and [Lz, Ŷ ] = −ih̄X̂. Using the inverse relations
(42), the following commutation relations can be obtained

[Lz,A±] = ±h̄A±,
[
Lz,A

†
±
] = ∓h̄A

†
±. (59)

Finally, the total angular momentum operator is

J = LzI4 + S. (60)

Using (57) and (59), the supercharge Q transforms as follows:

[J,Q] = κ+([Lz,A+] − h̄A+)σ− ⊗ σ3 + κ−([Lz,A−] + h̄A−)I2 ⊗ σ− = 0. (61)

Therefore, the supercharge Q and the angular momentum Lz are commuting objects. On the
other hand, one can immediately check that [Lz,Q

′] 
= 0 since by switching the operators
A+ → A−, this commutator becomes nontrivial. As breaking of time reversal symmetry lifts
the degeneracy between states with angular momentum +m and −m, it is clear that only the
supercharge Q that does not change the angular momentum can survive in the noncommutative
limit. Indeed, it is not difficult to check that this is exactly half of the supercharges in the
commutative case.

8
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4. BPS states

BPS states saturate the lower energy bound in a given charge sector [16, 19]. They play an
important role in the analysis of many systems as they satisfy simpler equations, which often
allows the exact computation of their spectrum. In supersymmetric systems they generically
possess only a fraction of the full supersymmetry, 1/2 BPS states, which possess only half of
the supersymmetry, being a typical example. Due to the importance of these states, it is useful
to clarify their role in the present setting.

The first point to realize is that the supersymmetry breaking arising from the
noncommutativity of space is not related to the supersymmetry breaking occurring in BPS
states. Indeed, in the latter case the Hamiltonian still has the full supersymmetry, it is the states
that have a reduced supersymmetry. The supersymmetry breaking discussed in the previous
sections is an explicit breaking of supersymmetry in the sense that half of the supercharges
are no longer conserved in the presence of noncommutativity. In the present setting it is quite
straightforward to identify the BPS states and their supersymmetry. First note that the Hilbert
space can be written as the direct sum of sectors with fixed angular momentum. In each sector
we can then identify those states that give the lowest possible energy. It is simple to see that
for negative angular momentum these are the states⎛⎜⎜⎝

|n+, 0〉
0
0
0

⎞⎟⎟⎠
⎛⎜⎜⎝

0
|n+ − 1, 0〉

0
0

⎞⎟⎟⎠ . (62)

These states have angular momentum m = −n+ and energy E = −m, which is indeed the
lowest energy bound in this sector. For positive angular momentum the corresponding states
are ⎛⎜⎜⎝

|0, n−〉
0
0
0

⎞⎟⎟⎠
⎛⎜⎜⎝

0
0

|0, n− − 1〉
0

⎞⎟⎟⎠ . (63)

These states have angular momentum m = n− and energy E = m, which is again the lowest
energy bound in this sector.

The pairs of states (62) and (63) are BPS states, related by a time reversal transformation.
In the noncommutative case each pair is degenerate, while the two pairs are nondegenerate
and each is annihilated by six of the conserved eight supercharges (44). Note, however, that
these six supercharges are different for the positive and negative angular momentum pairs.
Each pair therefore represents a 3/4 BPS doublet in which the remaining two supercharges
ladder between the two members of the pair. In the commutative case all angular momentum
states and in particular these pairs are degenerate. Due to this degeneracy there are eight more
conserved supercharges (51) and each pair forms part of a 1/2 BPS octet. This octet gets
broken pairwise when noncommutativity is switched on. It is worthwhile noting that in the
m = 0 sector, the lowest energy state is the ground state of the system which has the full
supersymmetry, i.e., eight in the noncommutative and sixteen in the commutative case.

5. Conclusion

We have extended the fundamental notions of supersymmetric factorization to two-dimensional
noncommutative quantum systems. The new approach was then applied to factorize the

9



J. Phys. A: Math. Theor. 42 (2009) 165206 J Ben Geloun and F G Scholtz

noncommutative harmonic oscillator. The diagonalization of the quantum Hamiltonian
operator has been successfully performed and, consequently, we determined the quantum
supercharges. It turns out that the supersymmetry is partially broken and the number of
supercharges decreases in the presence of noncommutativity. Furthermore, we have discussed
how this supersymmetry breaking is related to time reversal symmetry breaking. Finally, in
the commutative limit the usual properties are recovered.
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